Sunday, June 27, 2010

Magma

INTRODUCTION
Magma, molten or partially molten rock beneath the earth’s surface. Magma is generated when rock deep underground melts due to the high temperatures and pressures inside the earth. Because magma is lighter than the surrounding rock, it tends to rise. As it moves upward, the magma encounters colder rock and begins to cool. If the temperature of the magma drops low enough, the magma will crystallize underground to form rock; rock that forms in this way is called intrusive, or plutonic igneous rock, as the magma has formed by intruding the surrounding rocks. If the crust through which the magma passes is sufficiently shallow, warm, or fractured, and if the magma is sufficiently hot and fluid, the magma will erupt at the surface of the earth, possibly forming volcanoes. Magma that erupts is called lava.
COMPOSITION OF MAGMA
Magmas are liquids that contain a variety of melted minerals and dissolved gases. Because magmas form deep underground, however, geologists cannot directly observe and measure their original composition. This difficulty has led to controversy over the exact chemical composition of magmas. Geologists cannot simply assume it is the same as the composition of the rock in the source region. One reason for this is that the source rock may melt only partially, releasing only the minerals with the lowest melting points. For this reason, the composition of magma produced by melting 1 percent of a rock is different from the composition of magma produced by melting 20 percent of a rock. Experiments have shown that the temperature and pressure of the location within the earth, and the amount of water present at that location affect the amount of melting. Because temperature and pressure increase as depth within the earth increases, melting an identical source rock at different depths will produce magmas of different composition. Combining these considerations with the fact that the composition of the source rock may be different in different geographic regions, there is a considerable range of possible compositions for magma.
As magma moves toward the surface, the pressure and temperature decrease, which causes partial crystallization, or the formation of mineral crystals within the magma. The compositions of the minerals that crystallize are different from the initial composition of the magma because of changes in temperature and pressure, hence the composition of the remaining liquid changes. The resultant crystals may separate from the liquid either by sinking or by a process known as filter-pressing, in which pressure compresses the liquid and causes it to move toward regions of lower pressure while leaving the crystals behind. As a result, the composition of the remaining magma is different from that of the initial magma. This process is known as magmatic differentiation, and is the principal mechanism whereby a wide variety of magmas and rocks can be produced from a single primary magma (see Igneous Rock: Formation of Igneous Rocks).
The composition of a magma can also be modified by chemical interactions with, and melting of, the rocks through which it passes on its way upward. This process is known as assimilation. Magma cannot usually supply enough heat to melt a large amount of the surrounding rock, so assimilation seldom produces a significant change in the composition of a magma.
Magmas also contain dissolved gases, because gases are especially soluble (easily dissolved) in liquids when the liquids are under pressure. Magma deep underground is under thousands of atmospheres (units of measure) of pressure due to the weight of the overlying rock. Gases commonly dissolved in magma are carbon dioxide, water vapor, and sulfur dioxide.

PHYSICAL PROPERTIES OF MAGMA
The density and viscosity, or thickness, of magma are key physical factors that affect its upward passage. Most rocks expand about 10 percent when they melt, and hence most magmas have a density of about 90 percent of the equivalent solid rock. This density difference produces sufficient buoyancy in the magma to cause it to rise toward the surface.
The viscosity of a fluid is a measure of its resistance to flow. The viscosity of a magma affects how quickly the magma will rise, and it determines whether crystals of significantly different density will sink rapidly enough to change the bulk composition of the magma. Viscosity also influences the rate of release of gases from the magma when pressure is released. The viscosity of magma is closely related to the magma’s chemical composition. Magma rich in silicon and poor in magnesium and iron, called felsic magma, is very viscous, or thick . Magma poor in silicon and rich in magnesium and iron, called mafic magma, is quite fluid


No comments:

Post a Comment